
INTRODUCTION

What is an Recurrent Neural Network (RNN) ?
● There are 3 stages of RNN computation, similar to other multi-layer neural 

networks: 
● the forward pass
● the backward pass
● computing gradients during backpropagation

Why use RNNs?
● RNNs are distinguished by use of previously-computed neuron outputs 

across one more axis (not just going “up the layers”)
○ RNNs are particularly effective for predictive challenges on data that occur 

on a segmentable continuum (e.g. time)
■ each segment has intuitive dependencies (that the RNN aims to 

capture quantitatively) on neighboring segments 

● We focus on the inference-time forward pass 
○ assume that the training component has completed with parameter values 

(that are ready for use in inference computations)
○ entails the below four core formulas for layers’ neuronal outputs that 

we examine for opportunities to parallelize:
a[t] = b + W * h[t-1] + 

U * x[t]
h[t] = tanh(a[t])
o[t] = c + V * h[t]
y[t] = softmax(o[t])

a, h, and o are (vectors of) intermediate 
layers’ hidden values.

Actions highlighted in purple can occur in 
parallel via different threads

Parallelizing Inference:
● thread for one timestep has to 

wait for the value of h[t-1]to 
get a[t]. 

● project’s premise is to mitigate 
parallelization hindrance of this 
feature of RNNs 



CUDA Implementation: Logic and Initial Design Decisions

● The CUDA implementation was 
implemented to analyze the results 
of a GPU-based acceleration.

● We implemented two versions:
○ A sequential version: this is 

used as a benchmark to 
determine the speedup that 
results from the parallel version

○ A parallelized version

● The Kernel Function: 
○ Sequential version: calls the 

kernel function with one block 
with one thread

○ Parallel version: calls the kernel 
function with one block with 
timesteps number of threads 
(each thread handles one time 
step)

OUR DESIGN (see diagram above):
● For each h[t] at each time step: h[0] = -1 

(labeled in green in the diagram)
○ Thread 1 handles computation for t = 1 

■ Must wait for Thread 0 to finish computing h[0] before thread 1 can 
compute a[1]

■ Once Thread 0 computes h[0], Thread 1 begins computation for its 
timestep

■ In purple is the computation that is done in parallel (Thread 0 
continues computing o[0] and y[0] while Thread 1 computes a[1]))

■ The blue arrow highlights the dependency between threads

● The kernel function
○ Contains spin loop that keeps reading value in h[t-1]



CUDA Implementation: Challenges and Iterations

CHALLENGE 1: very slow memory access
● Our original implementation used global memory:

○ many issues with this: one was undefined behavior caused by race 
conditions (see diagram on below-right)

○ Global memory is much slower than shared memory (15x+ according to 
NVIDIA developer guide docs)

SOLUTION 1: maximally use shared memory 
local to kernels

● Allocated within a kernel launch
○ Added perk: faster 

declaration/initialization

SOLUTION 2: Use CUDA primitives for 
atomicity guarantees

● ATOMIC READS: use atomicCAS
● ATOMIC WRITES: use atomicExch

CHALLENGE 2: race conditions 
in writes and reads

● Pausing thread (reading) 
might collide with thread that 
is writing -> problems!

atomicExch(&h[0],

neroun_ouptut)

atomicExch(&h[HSIZE-1],

neroun_ouptut)

For all timesteps’ h vectors, 

.

.

.

atomicExch(&h[1],

neroun_ouptut)

Note: The CAS provided by CUDA 
API only works for integers: we had 
to adapt this (see references)atomicCAS

atomicExch



OpenMP Implementation: Idea

OpenMP Implementation: Challenges

● The OpenMP implementation is composed in CPU code
○ more tractable with logic involving more branching and variation. 
○ So, outsource the mainloop iteration (that computes the forward pass) to 

a function with internally-dependent control flow (e.g. conditionals)
■ but don’t have to work on minimization of non-uniformity in that 

function’s execution pattern, compared to CUDA

● cost of threads remaining idle observed 
to be higher with the OpenMP impl.

● Mitigation
○ compromise some accuracy for 

speedup
○ by way of the strategy we call 

“forward-fill” 

“Forward Fill”
1. once h[t] generated by thread 

at time t, get average(h[t])
2. vector of average(h[t])  

replicated across a tunable 
parameter of ( “ff” ) timesteps’ 
hidden neuron outputs 
a. tune to find the optimal 

point  tradeoff between 
degraded correctness 
and speedup

Tuning result: found that selecting a 
ff ≈ num_of_threads + 2 
optimal

● Correctness ensured by tracking a vector v 
○ initialized to all 0s at timestep 0
○ Previous timestep sets flag to 1 to indicate 

availability of neuron output
○ v atomically read from and written to



Results for CUDA Implementation

Problem Type / Parameters VSIZE HSIZE TIMESTEPS

Small Input Size 8000 50 5000

Large Input Size 8000 125 10000

These are the parameters for the two types of problems on which the implementation 
was tested

● TIMESTEPS: number of units of time (typically seconds) that the data spans
● HSIZE: number of features computed in the hidden state of the network (i.e. 

the dimensionality of the hidden vector h for each time step)
● VSIZE: number of values in the output vector (over which an argmax will yield 

the prediction)
● For all tests, the number of threads launched per block was 5 (empirically 

found to be a good balance between (under)-utilization and speedup)

After

Speedup Plots: Before-and-After switch to per-kernel shared memory access (for 
h storage)

Before



Results for OpenMP Implementation

● We observed middling speedups with a logical replication of the code we had 
for CUDA kernels. 

○ So, we devised the forward-filling strategy

Speedups with and without Forward-Filling

withwithout

Problem Type / Parameters VSIZE HSIZE TIMESTEPS

Small Input Size 8000 50 500

Large Input Size 8000 125 1000

Note: this plot depicts the best result from trials 
with multiple ff values; the results for ff = 15 
when num_of_threads = 12  were the data 
for the plot

Because GPUs are much faster than CPUs, we chose the following (smaller) 
problem parameters to increase comparability with our CUDA impl.
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Discussion of Discoveries, Shortcomings, and Matters for Further Inquiry

CUDA:
● Using shared memory (per-kernel) was very 

conducive to speedup
● But we still have some aggregation of results that 

involves global memory
○ May be some optimizations in that approach 

we overlooked
■ For sufficiently small problem 

parameters, don’t bother with global 
memory at all?

■ Compute fragmented sub-solutions (of 
contiguous sections of data) in 
separate executions and combine 
later, for bigger input sizes?

OpenMP
● Forward-filling turned out to be great for speedup
● However….

○ Its underlying logic is somewhat 
unsophisticated

■ interpolating data by copying an 
average, pretty much

○ Did not impinge correctness too much when 
the ff exceeded num_of_threads by 1-2 
(Occam’s Razor!), but correctness declined 
precipitously thereafter

○ Maybe doing some inference on the values 
to supply in the forward fill can mitigate this!

■ We are doing machine learning for 
value prediction after all :)

■ But, might require additional compute 
power at training time, to also develop 
neuron-like mechanisms for 


