
INTRODUCTION

What is an Recurrent Neural Network (RNN) ?
● There are 3 stages of RNN computation, similar to other multi-layer neural

networks:
● the forward pass
● the backward pass
● computing gradients during backpropagation

Why use RNNs?
● RNNs are distinguished by use of previously-computed neuron outputs

across one more axis (not just going “up the layers”)
○ RNNs are particularly effective for predictive challenges on data that occur

on a segmentable continuum (e.g. time)
■ each segment has intuitive dependencies (that the RNN aims to

capture quantitatively) on neighboring segments

● We focus on the inference-time forward pass
○ assume that the training component has completed with parameter values

(that are ready for use in inference computations)
○ entails the below four core formulas for layers’ neuronal outputs that

we examine for opportunities to parallelize:
a[t] = b + W * h[t-1] +

U * x[t]
h[t] = tanh(a[t])
o[t] = c + V * h[t]
y[t] = softmax(o[t])

a, h, and o are (vectors of) intermediate
layers’ hidden values.

Actions highlighted in purple can occur in
parallel via different threads

Parallelizing Inference:
● thread for one timestep has to

wait for the value of h[t-1]to
get a[t].

● project’s premise is to mitigate
parallelization hindrance of this
feature of RNNs

CUDA Implementation: Logic and Initial Design Decisions

● The CUDA implementation was
implemented to analyze the results
of a GPU-based acceleration.

● We implemented two versions:
○ A sequential version: this is

used as a benchmark to
determine the speedup that
results from the parallel version

○ A parallelized version

● The Kernel Function:
○ Sequential version: calls the

kernel function with one block
with one thread

○ Parallel version: calls the kernel
function with one block with
timesteps number of threads
(each thread handles one time
step)

OUR DESIGN (see diagram above):
● For each h[t] at each time step: h[0] = -1

(labeled in green in the diagram)
○ Thread 1 handles computation for t = 1

■ Must wait for Thread 0 to finish computing h[0] before thread 1 can
compute a[1]

■ Once Thread 0 computes h[0], Thread 1 begins computation for its
timestep

■ In purple is the computation that is done in parallel (Thread 0
continues computing o[0] and y[0] while Thread 1 computes a[1]))

■ The blue arrow highlights the dependency between threads

● The kernel function
○ Contains spin loop that keeps reading value in h[t-1]

CUDA Implementation: Challenges and Iterations

CHALLENGE 1: very slow memory access
● Our original implementation used global memory:

○ many issues with this: one was undefined behavior caused by race
conditions (see diagram on below-right)

○ Global memory is much slower than shared memory (15x+ according to
NVIDIA developer guide docs)

SOLUTION 1: maximally use shared memory
local to kernels

● Allocated within a kernel launch
○ Added perk: faster

declaration/initialization

SOLUTION 2: Use CUDA primitives for
atomicity guarantees

● ATOMIC READS: use atomicCAS
● ATOMIC WRITES: use atomicExch

CHALLENGE 2: race conditions
in writes and reads

● Pausing thread (reading)
might collide with thread that
is writing -> problems!

atomicExch(&h[0],

neroun_ouptut)

atomicExch(&h[HSIZE-1],

neroun_ouptut)

For all timesteps’ h vectors,

.

.

.

atomicExch(&h[1],

neroun_ouptut)

Note: The CAS provided by CUDA
API only works for integers: we had
to adapt this (see references)atomicCAS

atomicExch

OpenMP Implementation: Idea

OpenMP Implementation: Challenges

● The OpenMP implementation is composed in CPU code
○ more tractable with logic involving more branching and variation.
○ So, outsource the mainloop iteration (that computes the forward pass) to

a function with internally-dependent control flow (e.g. conditionals)
■ but don’t have to work on minimization of non-uniformity in that

function’s execution pattern, compared to CUDA

● cost of threads remaining idle observed
to be higher with the OpenMP impl.

● Mitigation
○ compromise some accuracy for

speedup
○ by way of the strategy we call

“forward-fill”

“Forward Fill”
1. once h[t] generated by thread

at time t, get average(h[t])
2. vector of average(h[t])

replicated across a tunable
parameter of (“ff”) timesteps’
hidden neuron outputs
a. tune to find the optimal

point tradeoff between
degraded correctness
and speedup

Tuning result: found that selecting a
ff ≈ num_of_threads + 2
optimal

● Correctness ensured by tracking a vector v
○ initialized to all 0s at timestep 0
○ Previous timestep sets flag to 1 to indicate

availability of neuron output
○ v atomically read from and written to

Results for CUDA Implementation

Problem Type / Parameters VSIZE HSIZE TIMESTEPS

Small Input Size 8000 50 5000

Large Input Size 8000 125 10000

These are the parameters for the two types of problems on which the implementation
was tested

● TIMESTEPS: number of units of time (typically seconds) that the data spans
● HSIZE: number of features computed in the hidden state of the network (i.e.

the dimensionality of the hidden vector h for each time step)
● VSIZE: number of values in the output vector (over which an argmax will yield

the prediction)
● For all tests, the number of threads launched per block was 5 (empirically

found to be a good balance between (under)-utilization and speedup)

After

Speedup Plots: Before-and-After switch to per-kernel shared memory access (for
h storage)

Before

Results for OpenMP Implementation

● We observed middling speedups with a logical replication of the code we had
for CUDA kernels.

○ So, we devised the forward-filling strategy

Speedups with and without Forward-Filling

withwithout

Problem Type / Parameters VSIZE HSIZE TIMESTEPS

Small Input Size 8000 50 500

Large Input Size 8000 125 1000

Note: this plot depicts the best result from trials
with multiple ff values; the results for ff = 15
when num_of_threads = 12 were the data
for the plot

Because GPUs are much faster than CPUs, we chose the following (smaller)
problem parameters to increase comparability with our CUDA impl.

References
Nabi, J. (2019, July 21). Recurrent neural networks (rnns). Medium. Retrieved
December 10, 2021, from
https://towardsdatascience.com/recurrent-neural-networks-rnns-3f06d7653a85.

Nvidia. (n.d.). Libcudacxx/atomic_thread_fence.MD at main · NVIDIA/libcudacxx.
GitHub. Retrieved December 10, 2021, from
https://github.com/NVIDIA/libcudacxx/blob/main/docs/extended_api/synchroniza
tion_primitives/atomic/atomic_thread_fence.md.

Using shared memory in CUDA C/C++. NVIDIA Developer Blog. (2021, October
29). Retrieved December 10, 2021, from
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/.

GPU computing with CUDA Lecture 3 - efficient shared ... - bu. (n.d.). Retrieved
December 10, 2021, from https://www.bu.edu/pasi/files/2011/07/Lecture31.pdf.

Cuda C++ Programming Guide. NVIDIA Documentation Center. (n.d.). Retrieved
December 10, 2021, from
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

Cuda – tutorial 4 – atomic operations. The Supercomputing Blog. (2011,
September 11). Retrieved December 10, 2021, from
http://supercomputingblog.com/cuda/cuda-tutorial-4-atomic-operations/.

Understanding and using atomic memory operations. Understanding and Using
Atomic Memory Operations. (n.d.). Retrieved December 10, 2021, from
https://on-demand.gputechconf.com/gtc/2013/presentations/S3101-Atomic-Me
mory-Operations.pdf.

How to access global memory efficiently in CUDA C/C++ kernels. NVIDIA
Developer Blog. (2020, August 25). Retrieved December 10, 2021, from
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-
kernels.

Fisseha Berhane, Phd. Building a Recurrent Neural Network - Step by Step - v1.
(n.d.). Retrieved December 10, 2021, from
https://datascience-enthusiast.com/DL/Building_a_Recurrent_Neural_Network-St
ep_by_Step_v1.html.

Discussion of Discoveries, Shortcomings, and Matters for Further Inquiry

CUDA:
● Using shared memory (per-kernel) was very

conducive to speedup
● But we still have some aggregation of results that

involves global memory
○ May be some optimizations in that approach

we overlooked
■ For sufficiently small problem

parameters, don’t bother with global
memory at all?

■ Compute fragmented sub-solutions (of
contiguous sections of data) in
separate executions and combine
later, for bigger input sizes?

OpenMP
● Forward-filling turned out to be great for speedup
● However….

○ Its underlying logic is somewhat
unsophisticated

■ interpolating data by copying an
average, pretty much

○ Did not impinge correctness too much when
the ff exceeded num_of_threads by 1-2
(Occam’s Razor!), but correctness declined
precipitously thereafter

○ Maybe doing some inference on the values
to supply in the forward fill can mitigate this!

■ We are doing machine learning for
value prediction after all :)

■ But, might require additional compute
power at training time, to also develop
neuron-like mechanisms for

